
The Effect of Inverse Document Frequency Weights on Indexed Sequence Retrieval

Kevin C. O'Kane

Department of Computer Science

The University of Northern Iowa

Cedar Falls, Iowa 50613

okane@cs.uni.edu

http://www.cs.uni.edu/~okane

Abstract

Summary: The IDF (Inverse Document Frequency) weight is a method to calculate a relative

weighting factor for words used in natural language text indexing. The purpose of these

experiments was to determine the effect of this technique when applied to retrieval of genomic

sequences. This paper reports the results of an implementation of the IDF on the NCBI “nt”

nucleotide data base and compares the results with other sequence retrieval systems. The

implementation discussed here consists of a collection of open-source, C++ programs written for

Linux that (1) build an inverted index of all sequences in a data base; (2) calculate a relative

weight for each possible tuple of length k; (3) and retrieve, score, and rank, sequences from the

data base in response to queries. Retrieval speeds are based primarily on query length rather than

data base size.

Introduction

Current access to genomic databases is mainly accomplished by means of heuristic-assisted

pattern matching from flat or nearly flat files of stored sequences using programs such as BLAST

[Altschul 1990] and FASTA [Pearson 2000]. The underlying data bases are growing rapidly

with consequent deterioration of search times even on large, multiprocessor systems as current

software tools reach their design limits.

BLAST and other similar systems pre-index each data base sequence according to short code

letter words (generally, 3 letters for amino acid and 11 letters for nucleotide data bases). Queries

are decomposed into similar short code words. The data base is scanned and those stored

sequences having code words in common with the query are processed further to extend the

initial code word match. Substitution matrices are frequently used with protein sequences to

allow for evolutionary mutation. Statistical analysis of the results predict the degree to which an

alignment is by chance, relative to the size of the data base. Scanning of the sequence indices is

primarily sequential although many speed enhancing techniques are employed such as

multiprocessor support.

The related area of natural language text indexing and retrieval has been studied since the mid-

50's. In processing natural language text, the problem is to locate documents most closely

matching a natural language query. To do this, a number of techniques have been developed to

identify which terms in a document are most likely to be good indicators of content as opposed to

terms that are poor content descriptors. By eliminating the poor descriptors and pre-indexing the

documents by good descriptors, recall and precision can be enhanced. In this experiment, the

inverse document frequency [Salton 1983] weight was adapted for use with the NCBI “nt”

nucleotide data base.

Experiment Design

Sequences from the NCBI "nt" non-redundant nucleotide data base were used. The “nt” data base

(ftp://ftp.ncbi.nih.gov/blast/db/FASTA) was approximately 12 billion bytes in length at the time

of the experiment and consisted 2,584,440 sequences in FASTA format.

The overall frequencies of occurrence of all possible 11 character tuples in each sequence in the

data base were determined along with the number of sequences in which each unique word was

found. A total of 4,194,299 unique words were identified, slightly less than the theoretical

maximum of 4,194,304. The tuple size of 11 was initially selected as this is the default tuple

size used in BLAST for nucleotide searches. The programs however, will accommodate other

tuple lengths and the default tuple size for proteins is three.

The data base was processed according to the diagram in Figure 3. Each sequence in the “nt”

data base was read and and decomposed into all possible words in the sequence string of length

11 by taking all 11 letter words beginning at starting position one, two and so on up to and

including starting position eleven. Procedurally, given the vast amount of words produced, this

was accomplished by producing multiple (about 110) intermediate files (*.words) of about 440

million bytes each, ordered alphabetically by word and listing, for each word, the relative

reference number of the original sequence containing the word. A relative sequence number was

used as it could be expressed in four bytes rather than an offset which would have required eight

bytes due to the size of the input data base (12 GB). A master table named offset.table was also

produced that translates each relative sequence reference into an eight byte offset into the

original data base. The multiple intermediate files were subsequently merged and and three files

produced: (1) a large (40 GB) word-sequence table, out.table, giving, for each word, a list of the

sequence references of those sequences in which the word occurs; (2) a file (freq.bin) containing

the IDF weights for each word (53 MB); and (3) a file named index (76 MB) giving for each

word the eight byte offset of the word's entry in out.table. Finally, index and freq.bin are merged

into ITABLE (112 MB) which contains for each word its weight, offset, and a pointer to a list of

aliases (not used with the “nt” data base).

The IDF weights (freq.bin) Wi for each word i were calculated by taking the base 10 logarithm,

multiplied by 10 and truncated to the nearest integer, of the total number of sequences (N)

divided by the number of sequences in which each word occurred (DocFreqi):

 Wi= (int) 10 * Log10 (N / DocFreqi)

This weight yields higher values for words whose distribution is more concentrated and lower

values for words whose use is more widespread. Thus, words of broad context are weighted

lower than words of narrow context.

For retrieval, each query sequence was read and decomposed into 11 character words. These

words were reduced to a numeric equivalent and this was used to index ITABLE. Entries in a

master scoring vector corresponding to data base sequences were incremented by the weight of

the word if the word occurred in the sequence and if the weight of the word lay within a specified

range. Ultimately, when all words were processed, entries in the master sequence vector were

normalized according to the length of the underlying sequences and to the length of the query.

Finally, the master sequence vector was sorted and the top scoring entries were either printed or

submitted to a Smith-Waterman [Smith 1981] procedure for more detailed scoring and then re-

sorted and printed. Optionally, the Smith-Waterman alignments details can be printed and the

selected sequences can be extracted from the data base and stored in a separate output file for

additional post-processing.

Results

Figure 1 shows a graph of aggregate word frequency by weight. The height of each bar reflects

the total number of instances of all words of a given weight in the data base. The bulk of the

words, as is also the case with natural language text [Salton 1983, O'Kane 2004], reside in the

middle range. The slight bulge on the right side of the otherwise uniform bell shaped curve was,

however, unexpected. Figure 2 is a graph of the number of distinct words at each weight. The

twin peaks were also unexpected, based on experience in natural language indexing. The two

distinct peaks suggest the possible presence of two “vocabularies” with overlapping bell curves.

Five hundred test queries were randomly generated from the “nt” data base by (1) randomly

selecting 500 sequences whose length was between 200 and 800 letters; (2) from each of these,

extracting a random contiguous subsequence between 200 and 400 letters; and (3) randomly

mutating 1 letter out of 12.

The test queries were processed and scored by the indexing program with weighting enabled and

disabled and also by BLAST. The output of each consisted of 500 sequence title lines ordered by

score. The results are summarized in Table 1 and Figures 4 and 5. In Figures 4 and 5, larger bars

further to the left indicate better performance (ideally, a single large bar at position 1). The

Average Time includes post processing of the results by a Perl program. The Average Rank and

Median Rank refer to the average and median positions, respectively, in the output of the

sequence from which a query was originally derived. A lower number indicates better

performance. The bar at position 60 indicates all ranks 60 and above as well as sequences not

found.

When running in unweighted mode, all words in a query were weighted equally and sequences

containing those words were scored exclusively on the unweighted cumulative count of the

words in common with the query vector. When running in weighted mode, query words were

used for indexing if they fell within the range of weights being tested and data base sequences

were scored on the sum of the weights of the terms in common with the query vector and

normalized for length.

Figure 5 shows results obtained using the 500 random sequences using indexing only and no

weights. The graph in Figure 4 shows significantly better results for the same query sequences

with weighted indexing enabled (see also Table 1). When all weighted words are used, the

performance declines as reflected in Table 1 indicated by the legends “Weighted 65+ and

“Weighted All”.

Subsequently, multiple ranges of weights were tested with the same random sequences. These

tests are reflected in Table 1. In these tests, only words within certain weight ranges were used.

The primary indicators of success were the Average Rank and the number of sequences found

and not found. From these results, it appears that optimal performance can be obtained using

weights in the general range of 85 to 100 which corresponds to the down slope of the second

peak in Figure 2. An unexpected similar improvement in performance can also be seen in those

tests that encompassed the downslope of the first peak in Figure 2, as seen in range 70-80.

On larger query sequences (5,000 to 6,000 letters), the IDF weighted method performed slightly

better than BLAST. On 25 long sequences randomly generated as noted above, the IDF method

correctly ranked the original sequence first 24 times, and once at rank 3. BLAST, on the other

hand, ranked the original sequence first 21 times while the remaining 4 were ranked 2, 2, 3 and

4. Average time per query for the IDF method was 47.4 seconds and the average time for

BLAST was 122.8 seconds.

Word sizes other than 11 were tested but with mixed results. Using a word longer than 11

greatly increases the number of words and intermediate file sizes while a smaller value results in

too few words relative the the number of sequences to provide full resolution.

Conclusions

The results indicate that using IDF weights improves indexed retrieval of nucleotide sequences

and is generally twice as fast as BLAST on queries of length up to 6000 letters. Based on these

results, more sophisticated and time consuming indexing techniques may also yield benefits.

These include hierarchical sequence clustering, synonym recognition, vocabulary clustering and

other from the area of natural language indexing. The unexpected anomalies in the graphs of the

word frequencies by weight noted above require additional study to determine the nature of the

phenomena.

The software for the IDF indexer and retrieval phase is available without charge in source code

form under the open-source GNU General Public License (GPL) for Linux and Cygwin (for

Windows) at www.cs.uni.edu/~okane. It is part of a Linux-based toolkit of software designed to

aid in the fast retrieval and matching of databases of up to 256 terabytes in size.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local alignment search

tool. J. Mol. Biol. 215:403-10.

O'Kane, K.C.; and Lockner, M. J. (2004) Indexing genomic sequence libraries, Information

Processing and Management, 41:265-274.

Pearson, W. R. (2000) Flexible sequence similarity searching with the FASTA3 program

package. Methods Mol. Biol. 132:185-219.

Salton, G. (1983), Introduction to Modern Information Retrieval, McGraw-Hill (New York

1983).

Smith, T.F. & Waterman, M.S. (1981) Identification of common molecular subsequences. J.

Mol. Biol. 147:195-197

Figure 1

Aggregate Distribution of Words by Weight

2
6
2
8
3
0
3
2
3
4
3
6
3
8
4
0
4
2
4
4
4
6
4
8
5
0
5
2
5
4
5
6
5
8
6
0
6
2
6
4
6
6
6
8
7
0
7
2
7
4
7
6
7
8
8
0
8
2
8
4
8
6
8
8
9
0
9
2
9
4
9
6
9
8
1
0
0

1
0
2

1
0
4

1
0
6

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

550000000

600000000

Figure 2

Number of Words at Each Weight

2
6
2
8
3
0
3
2
3
4
3
6
3
8
4
0
4
2
4
4
4
6
4
8
5
0
5
2
5
4
5
6
5
8
6
0
6
2
6
4
6
6
6
8
7
0
7
2
7
4
7
6
7
8
8
0
8
2
8
4
8
6
8
8
9
0
9
2
9
4
9
6
9
8
1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
120000
130000
140000
150000
160000
170000

Figure 3

Indexing Procedures

Figure 4

Retrieval Using Weighted 65-120 Index

1 3 5 7 9 1
1
1
3
1
5
1
7
1
9
2
1
2
3
2
5
2
7
2
9
3
1
3
3
3
5
3
7
3
9
4
1
4
3
4
5
4
7
4
9
5
1
5
3
5
5
5
7
5
9

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Figure 5

Retrieval Using Unweighted Index (all words)

1 3 5 7 9 1
1
1
3
1
5
1
7
1
9
2
1
2
3
2
5
2
7
2
9
3
1
3
3
3
5
3
7
3
9
4
1
4
3
4
5
4
7
4
9
5
1
5
3
5
5
5
7
5
9

0

5

10

15

20

25

30

35

40

45

50

55

Method Average

Time

Average

Rank

Median

Rank

Found Not Found

Weights 40-50 17.30 7.31 1 500 0
Weights 50-60 17.13 8.04 1 495 5
Weights 60-70 17.23 6.46 1 497 3
Weights 70-80 17.23 5.69 1 499 1
Weights 80-90 17.38 8.25 1 499 1
Weights 90-100 17.50 5.06 1 497 3

Weights 40-65 17.28 7.31 1 500 0
Weights 55-70 17.25 8.04 1 495 1
Weights 70-85 17.19 6.47 1 497 3
Weights 85-100 17.26 5.69 1 499 1

Weights 40-60 17.26 7.31 1 500 0
Weights 60-80 17.27 8.04 1 495 5
Weights 80-100 17.34 6.47 1 497 3

Weights 75-84 17.37 7.31 1 500 0
Weighted 65-120 18.34 7.31 1 500 0
Weighted 0-120 19.50 7.67 1 499 1
BLAST 41.74 6.12 1 499 1
Unweighted 23.6 38.27 29 492 8

Table 1

Comparison of Methods for 500 Randomized Sequence Queries

